If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4m^2=(m+4)(2+m)
We move all terms to the left:
4m^2-((m+4)(2+m))=0
We add all the numbers together, and all the variables
4m^2-((m+4)(m+2))=0
We multiply parentheses ..
4m^2-((+m^2+2m+4m+8))=0
We calculate terms in parentheses: -((+m^2+2m+4m+8)), so:We get rid of parentheses
(+m^2+2m+4m+8)
We get rid of parentheses
m^2+2m+4m+8
We add all the numbers together, and all the variables
m^2+6m+8
Back to the equation:
-(m^2+6m+8)
4m^2-m^2-6m-8=0
We add all the numbers together, and all the variables
3m^2-6m-8=0
a = 3; b = -6; c = -8;
Δ = b2-4ac
Δ = -62-4·3·(-8)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{33}}{2*3}=\frac{6-2\sqrt{33}}{6} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{33}}{2*3}=\frac{6+2\sqrt{33}}{6} $
| 7x^2-9-33=0 | | 5t+8=-1t-4 | | 18(x-1)=-6(3-x)+12 | | 2x^2+13x+15=(x+5) | | 44+x=57 | | 5t-8=-7t+4 | | 7x+3x−2x=32. | | 3-1/2(6x+10)=5x+8-10x | | -27+20w=11 | | 6(d+3)=9(d+9) | | w^2-4W+1=0 | | 4x^2+2-38=0 | | 4x2=3 | | 3x^2+5√5x-10=0 | | 4+7x5=7x(5-4) | | 4y=-8y2-2 | | y^2-18y-219=0 | | 3w2-9=0 | | 4x2+9=0 | | 6p2+3p-2=0 | | 5/2x-7/2=23/2 | | 3t2–9t=0 | | 40x+3=x | | 4w=14.4 | | 9v2+8v–6=0 | | 7=-8u2 | | 5q2+3=0 | | 10.4+85.58=-9.6x+85.54 | | 3x^2-44×+484=0 | | |2x+3|−6=11 | | 5(n+2)+2=12-8n | | 10y-3=4y+15 |